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Summarizing a Corpus

Text data is messy and to make sense of it you often have to clean it a bit first. For example, do you want
“Tuesday” and “Tuesdays” to count as separate words or the same word? Most of the time we would want to
count this as the same word. Similarly with “run” and “running”. Furthermore, we often are not interested in
including punctuation in the analysis - we just want to treat the text as a “bag of words”. There are libraries in R
that will help you do this.

All code and data for this and the other two modules on text mining can be fond in here
(https://www.dropbox.com/sh/smgrrechpwlbodg/AAA8nkEzYsJ8T2PufnviHbnra?dl=1).

In the following let’s look at Yelp reviews of Las Vegas hotels:

reviews <- read rds('data/vegas_hotel reviews.rds')
business <- read_rds('data/vegas_hotels info.rds')

This data contains customer reviews of 18 hotels in Las Vegas. In addition to text, each review also contain a
star rating from 1 to 5. Let's see how the 18 hotels fare on average in terms of star ratings:

library(tidyverse)
library(scales)
library(lubridate)

reviews %>%
left join(select(business,business_id,name),
by='business_id') %>%
group by(name) %>%
summarize(n = n(),
mean.star = mean(as.numeric(stars))) %>%
arrange(desc(mean.star)) %>%
ggplot() +
geom_point (aes(x=reorder (name,mean.star),y=mean.star,size=n))+
coord_flip() +
ylab('Mean Star Rating (1-5)') +
xlab('Hotel')
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So The Venetian, Bellagio and The Cosmopolitan are clearly the highest rated hotels, while Luxor and LVH are
the lowest rated. Ok, but what is behind these ratings? What are customers actually saying about these hotels?
This is what we can hope to find through a text analysis.

Constructing a Document Term Matrix

In the following we will make use of two libraries for text mining:

## install packages

install.packages(c("wordcloud", "tidytext")) ## only run once
library(tidytext)

library(wordcloud)

Simple text summaries is often based on the document term matrix. This is an array where each row
corresponds to a document and each column corresponds to a word. The entries of the array are simply counts
of how many times a certain word occurs in a certain document. Let’s look at a simple example:

example <- data.frame(doc_id = c(1l:4),
text=c("I have a brown dog. My dog loves walks.",
"My dog likes food.",
"I like food.",
"Some dogs are black."),
stringsAsFactors = F)

This data contains four documents. The first document contains 8 unique words (or “terms”). The word “brown”
occurs once while “dog” occurs twice. We can create document-term counts using the tidytext’s library
unnest_tokens and then a simple count:

example %>%
unnest_tokens(word,text) %>%
count (doc_id,word)
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automatically.

We are usually performing text summaries with the goal of understanding what a document or set of
documents are about. To this end many of the often used words in the English language are useless - words
such as the, and, it and so on. These words are called “stop words” and we can remove them automatically by

word

brown
dog
have

loves
my
walks
dog
food
likes
my
food

like
are
black
dogs
some

using an anti_join :

example %>%

##
##
##
##
##
##
##
##
##
##
##

We now have a more distilled and interesting representation of each document. Let'’s try this out on some real
data - the hotel reviews above. Suppose we are interersted in summarizing the reviews for the Aria hotel:
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unnest_tokens(word,text) %>%
count (doc_id,word) %>%
anti join(stop words)
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J

This data contains four documents. The first document contains 8 unique words (or “terms”). The word “brown’
occurs once while “dog” occurs twice. Note that punctuation is removed and lower-casing is done
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aria.id <- filter(business,
name=='Aria Hotel & Casino')$business_id
aria.reviews <- filter(reviews,
business_id==aria.id)

AriaTidy <- aria.reviews %>%
select(review_id,text,stars) %>%
unnest tokens(word,text)

AriaFreqWords <- AriaTidy %>%
count (word)

Let's plot the top words:

AriaFregqWords %>%
top_n(25) %>%
ggplot(aes(x=fct_reorder(word,n),y=n)) + geom bar(stat='identity') +
coord_flip() + theme bw()+
labs(title='Top 25 Words in Aria Reviews',
x='Count',
y= 'Word')
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ok - so here we see the problem with stop words. Let's remove them:
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AriaFreqWords %>%
anti join(stop words) %>%
top_n(25)
ggplot(aes(x=fct_reorder(word,n),y=n)) + geom bar(stat='identity') +
coord flip() + theme bw()+
labs(title="'Top 25 Words in Aria Reviews',
subtitle 'Stop Words Removed',
x='Count',
y= 'Word')

>%

Top 25 Words in Aria Reviews

Stop Words Removed
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Much better! But how do these top words vary with the rating of the underlying reviews? This is an easy

extension:

o4

1000

AriaFreqWordsByRating <- AriaTidy %>%

count (stars,word)
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AriaFregqWordsByRating %>%
anti join(stop words) %>%
group_by(stars) %>%
top_n(20) %>%
ggplot(aes(x=reorder within(word,n,stars),
y=n,
fill=stars)) +
geom_bar(stat='identity') +
coord flip() +
scale x reordered() +
facet_wrap(~stars,scales =
theme bw() +
theme (legend.position =
labs(title = 'Top Words by Review Rating',

'free',nrow=1) +

"none" )+

subtitle = 'Stop words removed',
x = 'Word',
y = 'Count')
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Here we can begin to see what is behind low rated experiences and high rated experiences.

A typical visualization of document term arrays are word clouds. These can easily be done in R:

topWords <- AriaFreqWords %>%
anti join(stop words) %>%
top _n(100)

wordcloud (topWords$word,
topWords$n,
scale=c(5,0.5),
colors=brewer.pal(8,"Dark2"))
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Above we looked at terms in isolation. Sometimes we may want to summarize terms two at a time. These are
called “bi-grams”:

music

aria.reviews %>%
select(review_id,text) %>%
unnest_ tokens(bigram, text,token="ngrams",n=2) %>%
count (bigram) %>%
top _n(40) %>%
ggplot(aes(x=fct_reorder(bigram,n),y=n)) + geom bar(stat='identity') +
coord_flip() +
labs(title="Top Bi-grams",
x = "Counts",
y = "Terms")
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All of the above analyses looked at overall term frequencies. Sometimes we may have a different objective:
What is one given document about? The default metric for this question is a document’s Term-Frequency-
Inverse Document-Frequency (TF-IDF). A word’s TF-IDF is a measure of how important a word is to a document.
Itis calculated as

number of times word appears in document
TF(word) =

total number of words in document

total number of documents

IDF(word) = lo
(word) Ee Number of documents with word in it

TF-IDF(word) = TF(word) X IDF(word)

Words with high TF-IDF in a document will tend to be words that are rare (when compared to other documents)
but not too rare. In this way they are informative about what the document is about! We can easily calculate TF-
IDF using bind_tf_idf:
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tidyReviews <- aria.reviews %>%
select(review_id,text) %>%
unnest_tokens(word, text) %>%
count (review_ id,word)

minLength <- 200 # focus on long reviews

tidyReviewsLong <- tidyReviews $%>%
group_ by (review_id) %>%
summarize(length = sum(n)) %>%
filter(length >= minLength)

tidyReviewsTFIDF <- tidyReviews %>%
filter(review _id %in% tidyReviewsLong$review id) %>%
bind tf idf(word,review_id,n) %>%
group_ by (review_id) %>%
arrange(desc(tf idf)) %>%
slice(1l:15) %>% # get top 15 words in terms of tf-idf
ungroup() %>%
mutate (xOrder=n():1) %>% # for plotting
inner join(select(aria.reviews,review id,stars),by='review_id')

Here is a plot of the top TF-IDF words for 12 reviews:

nReviewPlot <- 12
plot.df <- tidyReviewsTFIDF %>%
filter(review id %in% tidyReviewsLong$review id[l:nReviewPlot])

plot.df %>%
mutate(review _id n = as.integer(review_id)) %>%
ggplot(aes(x=xOrder,y=tf idf,fill=factor(review id n))) +
geom_bar(stat = "identity", show.legend = FALSE) +
facet wrap(~ review_id_n,scales='free') +
scale x continuous(breaks = plot.df$xOrder,

labels = plot.df$word,
expand = ¢(0,0)) +
coord_flip()+
labs(x='Word',
y='TF-IDF',
title = 'Top TF-IDF Words in Reviews of Aria',

subtitle = paste0O('Based on first ',
nReviewPlot,
reviews'))+
theme(legend.position = "none")
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Top TF-IDF Words in Reviews of Aria
Based on first 12 reviews
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One can think of these as “key-words” for each review.

Aria v2.0
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If you want to try out a much bigger database of Aria reviews, you can use the data in the file
AriaReviewsTrip.rds. This contains 10,905 reviews of the Aria hotel scraped from Tripadvisor.
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aria <- read rds('data/AriaReviewsTrip.rds') %>%
rename (text = reviewText)

meta.data <- aria %>%
select(reviewID,reviewRating,date,year.month.group)

With this sample size you can do more in-depth analyses. For example, how do word frequencies change over
time? In the following we focus on the terms “buffet”,‘pool” and “staff”. We calculate the relative frequency of
these three terms for each month (relative to the total number of terms used that month).

ariaTidy <- aria %>%
select(reviewID, text) %>%
unnest_tokens(word,text) %>%
count (reviewID,word) %>%
inner join(meta.data,by="reviewID")

total.terms.time <- ariaTidy %>%
group_by(year.month.group) %>%
summarize(n.total=sum(n))

## for the legend
a <- l:nrow(total.terms.time)
b <- a[seq(l, length(a), 3)]

ariaTidy %>%
filter(word %in% c("pool","staff","buffet")) %>%
group_ by (word,year.month.group) %>%
summarize(n = sum(n)) %>%
left join(total.terms.time, by='year.month.group') %>%
ggplot (aes(x=year.month.group,y=n/n.total,color=word,group=word)) +
geom line() +
facet wrap(~word)+
theme (axis.text.x = element_text(angle = 90, hjust = 1))+
scale x discrete(breaks=as.character(total.terms.time$Syear.month.group[b]))+
scale y continuous(labels=percent)+xlab('Year/Month')+
ylab('Word Frequency relative to Month Total')+
ggtitle('Dynamics of Word Frequency for Aria Hotel')
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Dynamics of Word Frequency for Aria Hotel
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We see three different patterns for the relative frequencies: “buffet” is used in a fairly stable manner over this
time period, while “pool” displays clear seasonality, rising in popularity in the summer months. Finally, we see
an upward trend in the use of “staff”.

We can try a similar analysis where consider word frequency dynamics for different satisfaction segments:

aria.tidy2 <- ariaTidy %>%

mutate(year

year (date),
satisfaction

fct recode(factor(reviewRating),
"Not Satisfied"="1",
"Not Satisfied"="2",
"Neutral"="3",
"Neutral"="4",
"Satisfied"="5"))

total.terms.rating.year <- aria.tidy2 %>%

group by(satisfaction,year) %>%

summarize(n.total

aria.tidy2 %>%

sum(n))

filter(word %in% c("pool","staff","buffet","food","wait","casino","line", "check","c

lean")) %>%

group_by(satisfaction,year,word) %>%

summarize(n

sum(n)) %>%

left join(total.terms.rating.year, by=c('year', 'satisfaction')) %>%
ggplot(aes(x=year,y=n/n.total,color=satisfaction,group=satisfaction)) +
geom_line(size=1,alpha=0.25) + geom point() +

facet wrap(~word,scales='free')+

theme (axis.text.x

element_ text(angle =

90, hjust 1))+

scale y continuous(labels=percent)+xlab('Year')+

ylab('Word Frequency relative to Month Total')+

labs(title='Dynamics of Word Frequency for Aria Hotel',
subtitle='Three Satisfaction Segments')
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Dynamics of Word Frequency for Aria Hotel
Three Satisfaction Segments
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