
4/20/2021 Predicting Binary Events

bar.rady.ucsd.edu/bin_class.html 1/16

Predicting Binary Events

In this section we will develop methods
for predicting binary events. These are
events that either occur or don’t occur.
For example, will a certain customer
place a new order in the next month?
Clearly, this will either happen or not
happen. In order to do this we need to
modify our approach from the one we
used when discussing linear predictive
models. These were models of the
mean of a continuous variable, e.g., log
price. What we need to do now is to
model the mean of a binary variable,
e.g., a probability. If the predicted probability of the event occurring is high we will predict that it is likely that the
event will occur. Since we are modelling probabilities we need to make sure that the predicted probabalities are
constrained to be between zero and one. The most popular model for doing this is the Logit Model.

All data and code for the material below can be found here:

Logit Models
Suppose we want to understand what drives some users to click on an online banner ad. In this case we can let

 denote the binary event with

Suppose the online advertiser randomly changes the image shown on the add from the standard image
to a new test image . We want to predict by how the test image changes the click-rate. Suppose we have
data from a large set of users. Some users were exposed to the standard image while others were
exposed to the new image. A logit model will model the click rate as

where and are unknown parameters to be determined by the historical data. Let’s make some quick
observations. First, this model constrains the predicted probabilities to be between zero and one. Second, we
can use this model to see what the change in click-rate will be when we change the image. This is easy - just
plug in:

usethis::use_course('https://www.dropbox.com/sh/mln5gafmhu0iayg/AAAj9lbDiRVA9WYo6NL5T
tqDa?dl=1')

Y

= {Yi

1

0

if user i clicks on the ad,

otherwise.

X = 0

X = 1

(,)Yi Xi

Pr(= 1|) = ,Yi Xi

exp{ + }β0 βXXi

1 + exp{ + }β0 βXXi

β0 βX

Pr(click|standard image) = Pr(= 1| = 0) = .Yi Xi

exp{ }β0

1 + exp{ }β0

4/20/2021 Predicting Binary Events

bar.rady.ucsd.edu/bin_class.html 2/16

Using the historical data (and the power of R!) we can determine - we will see how to do this below. Similarly,

Therefore we get

Calibrating Logit Models on Data
The standard method used to calibrate the weights of a logit model is Maximum Likelihood. This is based on
choosing to maximize the total probability of the training data. Suppose the training data is
where are the predictor variables for person . De�ne

The probability of observing depends on what is - 1 or 0:

Therefore we can write the probability of observing as

If - in addition - we assume that is generated independently of all other ’s, then we can write the probability
of observing the full training sample as

The method of Maximum Likelihood uses a numerical algorithm to �nd the that maximizes . Technically,
since it turns out to be easier to maximize the log of , it will maximize .

Case Study: Titanic
You are about to board the Titanic - would you rather be
Jack or Rose? Well, of course we know what happened
in the movie - but was this representative of the actual
survival rates of rich young women vs. poor young men?
And what about old men or women? Let’s build a logit
model to predict survival probabilities for different
traveller segments on the Titanic.

First, we need the actual passenger data for Titanic with
information on demographics and survival outcomes. It
turns out that this exists - although it is incomplete: We
only have survival information on 1309 of the more than

β0

Pr(click|new image) = Pr(= 1| = 1) = .Yi Xi

exp{ + }β0 βX

1 + exp{ + }β0 βX

Δ(click rate) ≡ − .
exp{ + }β0 βX

1.0 + exp{ + }β0 βX

exp{ }β0

1 + exp{ }β0

β

β { ,Yi Xi}
N

i=1

Xi K i

≡ .μi ∑
k=1

K

βkXik

Yi Yi

Pr(= 1|)Yi Xi

Pr(= 0|)Yi Xi

= ,
exp{ }μi

1.0 + exp{ }μi

= .
1

1 + exp{ }μi

Yi

(β) ≡ ×Li ()exp{ }μi

1.0 + exp{ }μi

Yi

()1

1 + exp{ }μi

1−Yi

Yi Yi

L(β) = (β).∏
i=1

N

Li

β L(β)

L log L(β)

4/20/2021 Predicting Binary Events

bar.rady.ucsd.edu/bin_class.html 3/16

2000 passengers and complete demographics only for 1046 passengers. However, let’s see what we can do
with what we have. First, load the data and see what variables we have:

A tibble: 6 x 15
id pclass survived name sex age sibsp parch ticket fare cabin
<dbl> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 472 2nd Yes "Kel~ fema~ 45 0 0 223596 13.5 <NA>
2 370 2nd No "Cha~ fema~ 29 1 0 NA 26 <NA>
3 889 3rd No "Joh~ male 34 0 0 3101264 6.50 <NA>
4 628 3rd No "And~ fema~ 9 4 2 347082 31.3 <NA>
5 319 1st No "Wil~ male NA 0 0 113510 35 C128
6 1115 3rd No "Pea~ male NA 0 0 343271 7 <NA>
... with 4 more variables: embarked <chr>, boat <chr>, body <dbl>,
home.dest <chr>

Ok - looks like we have class of travel, survival outcome, name, gender, age. There is also information on
number of siblings/spouses aboard (sibsp) and number of parents/childen aboard (parch). You can also see
ticket number and price, cabin number, where the traveller embarked and home destination. For survivors you
can see which lifeboard they were on and for non-survivors you can see whether the body was recovered. The
data has been split into 1047 passengers in the training sample and 262 in the validation sample.

To see what might matter for survival, let’s quickly make some bar charts focusing on class of travel, age and
gender:

load libraries
library(tidyverse)
library(glmnet)

get the data
train <- read_csv('data/titanic_train.csv')
validation <- read_csv('data/titanic_validation.csv')

what's in the data?
head(train)

by class of travel
train %>%
 ggplot(aes(x=pclass,fill=survived)) + geom_bar(position='dodge') + xlab('Class of T

ravel')

4/20/2021 Predicting Binary Events

bar.rady.ucsd.edu/bin_class.html 4/16

by gender
train %>%
 ggplot(aes(x=sex,fill=survived)) + geom_bar(position='dodge')

4/20/2021 Predicting Binary Events

bar.rady.ucsd.edu/bin_class.html 5/16

by age
train %>%
 filter(!age=='NA') %>%
 mutate(age.f=cut(age,breaks=c(0,20,30,40,50,60,100))) %>%
 ggplot(aes(x=age.f,fill=survived)) + geom_bar(position='dodge') + xlab('Age Group')

4/20/2021 Predicting Binary Events

bar.rady.ucsd.edu/bin_class.html 6/16

Hmm…it’s pretty clear that passengers travelling on 3rd class didn’t fare well compared to 1st and 2nd class
passengers, and 2nd class passengers were worse off compared to 1st class. We also see a huge gender
effect - many more female passengers survived. It is a bit harder to judge the age effect. However, it seems like
the survival rate is much lower for 20-30 year olds than any of the other categories.

Based on these summaries, it seems reasonable to try out a logit model with class of travel, gender and age as
predictor variables. The syntax for setting up a logit model is more or less the same as the one we used for
linear predictive models:

remove observations with missing age, define age groups and survival outcome
train <- train %>%
 filter(!age=='NA') %>%
 mutate(age.f=cut(age,breaks=c(0,20,30,40,50,100)),
 lsurv = survived=='Yes',
 pclass = factor(pclass),
 sex = factor(sex))

validation <- validation %>%
 filter(!age=='NA') %>%
 mutate(age.f=cut(age,breaks=c(0,20,30,40,50,100)),
 lsurv = survived=='Yes',
 pclass = factor(pclass),
 sex = factor(sex))

define logit model: class of travel, gender, age group ----------------------
logitTitanicA <- glm(lsurv~pclass+sex+age.f,
 data=train,
 family=binomial(link="logit"))

4/20/2021 Predicting Binary Events

bar.rady.ucsd.edu/bin_class.html 7/16

This sets up a logit model for predicting the event that survived is equal to Yes. You can see the individual
effects by looking at the results:

Call:
glm(formula = lsurv ~ pclass + sex + age.f, family = binomial(link = "logit"),
data = train)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.2703 -0.7083 -0.4575 0.6751 2.4494

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.8952 0.3043 9.514 < 2e-16 ***
pclass2nd -1.2294 0.2527 -4.866 1.14e-06 ***
pclass3rd -2.2532 0.2484 -9.070 < 2e-16 ***
sexmale -2.4493 0.1858 -13.186 < 2e-16 ***
age.f(20,30] -0.3971 0.2401 -1.654 0.098131 .
age.f(30,40] -0.4714 0.2777 -1.698 0.089568 .
age.f(40,50] -1.1414 0.3273 -3.487 0.000488 ***
age.f(50,100] -1.1430 0.3703 -3.087 0.002024 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1129.41 on 837 degrees of freedom
Residual deviance: 792.11 on 830 degrees of freedom
AIC: 808.11

Number of Fisher Scoring iterations: 4

In a moment we will use R to automatically generate preditions for different traveller segments, but before we
do that it might be instructive to see how to do this manually. Suppose we wanted the predicted survival
probability for 25 year old males, travelling on 3rd class. We can piece together the effects for this segment
by simply picking out the relevant ones from the table above - remembering to always include the intercept:

Then - applying the logit formula - we get a predicted survival rate of

Those are bad odds - only 1 in 10 survived. Let’s calculate this for all segments. To do this we create a new
data frame where each row is a segment for which we want a predicted survival rate:

summary(logitTitanicA)

β

2.8952 − 2.2532 − 2.4493 − 0.3971 ≈ −2.20

Pr(survival|25 year, 3rd class, male) = exp(−2.20)/(1.0 + exp(−2.20)) ≈ 10%

4/20/2021 Predicting Binary Events

bar.rady.ucsd.edu/bin_class.html 8/16

The data frame predDF contains all possible combinations of our three predictor variables. Sometimes - when
you have many predictor variables - you might not be interested in all combinations and you would only use a
subset of all possibilities. Here we will use all of them (30 in total). The second command use the logit model
to predict the probability (“response”) for each of the rows in predDF.

Let’s check that our manual calculation above was correct:

pclass sex age.f Prob
1 3rd male (0,20] 0.14096462
2 3rd male (20,30] 0.09935783
3 3rd male (30,40] 0.09290324
4 3rd male (40,50] 0.04979937
5 3rd male (50,100] 0.04972038

These are the predicted survival rates for males travelling on 3rd class. We can see that we got it right above.

At this point it might be fun to visualize the predictions for all segments:

create prediction array
predDF <- expand.grid(pclass=levels(train$pclass),
 sex=levels(train$sex),
 age.f=levels(train$age.f))

make predictions
predDF$Prob <- predict(logitTitanicA,
 newdata = predDF,
 type = "response")

predDF %>%
 filter(sex=='male', pclass=='3rd')

plot predictions
predDF %>%
 ggplot(aes(x=age.f,y=Prob,group=sex,color=sex)) + geom_line(linetype='dotted') +
 geom_point() +
 ylab('Survival Probability') + xlab('Age Group') +
 facet_wrap(~pclass) +
 theme(axis.text.x = element_text(angle = 45, hjust = 1),
 plot.title=element_text(size=14))+
 ggtitle('Predicted Survival Probability by Class of Travel, Gender and Age')

4/20/2021 Predicting Binary Events

bar.rady.ucsd.edu/bin_class.html 9/16

What would you conclude about demographics and survival rates based on this?

Is the model above reasonable? Maybe - but one objection we could raise is the way we have modelled the
impact of gender and class of travel. Notice that by design, the effect of gender is the same for every class of
travel. This is a consequence of the additivity assumption implicit in the model above. Speci�cally, the
difference in the sum of ’s for males and females on 1st class is identical to the difference in the sum of ’s
for males and females on 3rd class. We can change this by adding an interaction in the model:

β β

logitTitanicB <- glm((survived=='Yes')~pclass*sex+age.f,
 data=train,
 family=binomial(link="logit"))

summary(logitTitanicB)

4/20/2021 Predicting Binary Events

bar.rady.ucsd.edu/bin_class.html 10/16

Call:
glm(formula = (survived == "Yes") ~ pclass * sex + age.f, family = binomial(link =
"logit"),
data = train)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.8218 -0.6939 -0.5519 0.5027 2.2748

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.4107 0.6350 6.946 3.75e-12 ***
pclass2nd -2.0623 0.6902 -2.988 0.002809 **
pclass3rd -4.2510 0.6375 -6.668 2.59e-11 ***
sexmale -4.1950 0.6192 -6.774 1.25e-11 ***
age.f(20,30] -0.4481 0.2346 -1.910 0.056086 .
age.f(30,40] -0.5038 0.2764 -1.823 0.068309 .
age.f(40,50] -1.2082 0.3475 -3.477 0.000507 ***
age.f(50,100] -1.2865 0.4129 -3.116 0.001832 **
pclass2nd:sexmale 0.7453 0.7503 0.993 0.320571
pclass3rd:sexmale 2.7342 0.6665 4.102 4.09e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1129.41 on 837 degrees of freedom
Residual deviance: 758.17 on 828 degrees of freedom
AIC: 778.17

Number of Fisher Scoring iterations: 6

The gender effect now depends on class of travel: In 1st class, the gender effect for males and females is
-4.19. For 3rd class it is -4.19+2.73 = -1.46. What does this mean? It means that the relative difference in
survival rates for males and females is much bigger in 1st class than 3rd class. We can see this better by
visualizing the implied survival rates:

predDF$Prob <- predict(logitTitanicB,
 newdata = predDF,
 type = "response")

predDF %>%
 ggplot(aes(x=age.f,y=Prob,group=sex,color=sex)) + geom_line(linetype='dotted') +
 geom_point() +
 ylab('Survival Probability') + xlab('Age Group') +
 facet_wrap(~pclass) +
 theme(axis.text.x = element_text(angle = 45, hjust = 1),
 plot.title=element_text(size=14))+
 ggtitle('Predicted Survival Probability by Class of Travel, Gender and Age')

4/20/2021 Predicting Binary Events

bar.rady.ucsd.edu/bin_class.html 11/16

Compare this to the previous plot.

One thing we haven’t done is to see how well our model actually predicts survival rates for the “validation”
passengers. We can use the predict function on the test data to do this:

We �rst get the predicted survival probabilities for each validation passenger and then use them to predict
survival if the probability is above 50% (otherwise no survival is predicted). We can now tally up our predictions
and see how we did. This is usefully presented in a table called a confusion matrix. This table simply counts
how many times we got a prediction right or wrong:

Let’s look at the �rst table:

FALSE TRUE
FALSE 98 20
TRUE 24 66

Remember that “TRUE” means survival. There were a total of 90 validation passengers who survived. This is
the sum of the second row in the table. The columns indicate our predictions of the fate of these passengers.
Model A correctly predicted that 66 of these 90 passengers survived. It wrongly predicted that 24 of them died.

validation <- validation %>%
 mutate(ProbRepA = predict(logitTitanicA,newdata = validation,type = "response"),
 ProbRepB = predict(logitTitanicB,newdata = validation,type = "response"),
 SurvPredA = ProbRepA > 0.5,
 SurvPredB = ProbRepB > 0.5)

TabPredA <- table(validation$lsurv,validation$SurvPredA)
TabPredB <- table(validation$lsurv,validation$SurvPredB)

TabPredA

4/20/2021 Predicting Binary Events

bar.rady.ucsd.edu/bin_class.html 12/16

Similarly - looking at the �rst row - there were a total of 118 validation passengers who died. We correcly predict
98 of these deaths. We can think of the diagonal of the table - normalized by the total - as the overall accuracy
of the model. This is

[1] 0.7884615

Let’s compare this to the second model:

FALSE TRUE
FALSE 111 7
TRUE 33 57

[1] 0.8076923

The second model has higher accuracy. It achieves this by being better at predicting non-survival compared to
Model A. Note that Model B is slightly worse than A at predicting survival.

Python Version
There are several Python libraries available for training logit classi�ers. Here we will use scikit-learn .
We load the required libraries and the data. Furthermore, knowing what we know from above, we also
drop passengers with missing age information:

AccuracyA <- (TabPredA[1,1]+TabPredA[2,2])/sum(TabPredA)
AccuracyA

AccuracyB <- (TabPredB[1,1]+TabPredB[2,2])/sum(TabPredB)

TabPredB

AccuracyB

import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix

get titanic.data ---
train = pd.read_csv('data/titanic_train.csv')
validation = pd.read_csv('data/titanic_validation.csv')
train = train.dropna(subset=['age'])
validation = validation.dropna(subset=['age'])

allDF = pd.concat([train, validation])
nTrain = train.shape[0]
nAll = allDF.shape[0]

4/20/2021 Predicting Binary Events

bar.rady.ucsd.edu/bin_class.html 13/16

Next we de�ne age bins like above and create the feature matrix using the get_dummies function from
pandas for both the training and validation data:

Now we are ready to train our classi�er. We initialize a LogisticRegression object and specify that we
wish to train the model without any penalty/regularization term (the default is an L2 penalty so we need
to override this). We then train the model using only the training data:

LogisticRegression(penalty='none')

We can inspect the trained weights for the classi�er:

array([2.89516993])

array([[-1.22938318, -2.25319286, -2.44926147, -0.39705775, -0.47139706,
-1.14135252, -1.14302393]])

This is identical to what we got above in the R version. Finally, we can predict on the validation data and
summarize the performance:

[[98 20]
[24 66]]

allDF['age_f'] = pd.cut(allDF["age"],bins=[0,20,30,40,50,100])

Xdf = allDF[['pclass','sex','age_f']].copy()
X = pd.get_dummies(data=Xdf, drop_first=True)
y = allDF['survived']

X_train = X[0:nTrain]
y_train = y[0:nTrain]
X_valid = X[nTrain:nAll]
y_valid = y[nTrain:nAll]

model = LogisticRegression(penalty = "none")
model.fit(X_train, y_train)

weights
model.intercept_

model.coef_

predictions on validation
y_pred = model.predict(X_valid)
y_pred_prob = model.predict_proba(X_valid)

confusion matrix
cm = confusion_matrix(y_valid, y_pred)
print(cm)

4/20/2021 Predicting Binary Events

bar.rady.ucsd.edu/bin_class.html 14/16

precision recall f1-score support

No 0.80 0.83 0.82 118
Yes 0.77 0.73 0.75 90

accuracy 0.79 208
macro avg 0.79 0.78 0.78 208
weighted avg 0.79 0.79 0.79 208

The confusion matrix is identical to the one we got above using R. Here we have also calculated a set of
additional performance metrics using the classification_report function. These metrics are useful
when more detailed insights into the model’s performance is needed. Precision is the fraction of
predicted positives (here survivals) that are correct while recall is the fraction of actual positives that the
model predicts correctly. These metrics can be relevant when prediction errors have differential costs to
the decision maker. For example, if false positives (an actual dead person is predicted to have survived)
are very costly, then precision should be monitored. On the hand, if false negatives (an actual survivor is
predicted to have died) are more costly, then recall is important. The F1 score is a balance of these two
considerations as is de�ned as 2(precisionrecall)/(precision + recall).

Case Study: Donors Choose
Let’s return to the DonorsChoose data. The objective is to try to predict which projects gets funded. Here we are
using a subset of the full data. There are 60,000 projects in the training data and we will use this data to predict
funding success of the 40,000 projects in the test data. Let’s read in the data and apply a few transformations:

cr = classification_report(y_valid, y_pred)
print(cr)

4/20/2021 Predicting Binary Events

bar.rady.ucsd.edu/bin_class.html 15/16

Next, we specify a logit model including the main characteristics of each project:

Let’s see how well we predict the validation projects:

library(tidyverse)
library(broom)
library(forcats)
library(lubridate)

get data

projectsTrain <- read_csv('data/projects_train.csv')
projectsVal <- read_csv('data/projects_validation.csv')

projectsTrain <- projectsTrain %>%
 mutate(cost.group = cut(total_price_excluding_optional_support,
 breaks = c(0,200,300,400,500,600,700,800,900,1000,1500,2000

,500000)),
 month = as.character(month(date_posted,label = T)),
 nStudents = cut(students_reached,
 breaks=c(0,10,20,30,50,100,200,10000),
 include.lowest = T))

projectsVal <- projectsVal %>%
 mutate(cost.group = cut(total_price_excluding_optional_support,
 breaks = c(0,200,300,400,500,600,700,800,900,1000,1500,2000

,500000)),
 month = as.character(month(date_posted,label = T)),
 nStudents = cut(students_reached,
 breaks=c(0,10,20,30,50,100,200,10000),
 include.lowest = T))

logitProjects <- glm(funding_status=='completed'~
 primary_focus_subject +
 grade_level +
 poverty_level +
 resource_type +
 eligible_double_your_impact_match +
 cost.group +
 nStudents +
 eligible_almost_home_match +
 month +
 teacher_teach_for_america +
 teacher_prefix +
 school_charter +
 school_magnet +
 school_state,
 data=projectsTrain,
 family=binomial(link="logit"))

logitProjectsStats <- tidy(logitProjects)

4/20/2021 Predicting Binary Events

bar.rady.ucsd.edu/bin_class.html 16/16

[1] 0.672725

Copyright © 2020 Karsten T. Hansen, All rights reserved.

logitProjectsStats <- tidy(logitProjects)

projectsVal$ProbCompleteLogit=predict(logitProjects,newdata = projectsVal,type = "res
ponse")

projectsVal$PredStatusLogit=if_else(projectsVal$ProbCompleteLogit > 0.5,'Pred.complet
ed','Pred.expired')

confMat1 <- table(projectsVal$funding_status,projectsVal$PredStatusLogit)
prec1 <- sum(diag(confMat1))/sum(confMat1)

prec1

